Effect of Ozone on Microbial Contaminants and Aflatoxin Reduction of Senna (Cassia angustifolia)

Abstract

The effects of ozone on microbial contaminants and aflatoxin reduction of senna (Cassia angustifolia) was investigated. The samples were exposed to ozone gas at the concentrations of 100 ppm for 60 and 120 minutes. The microbial population was determined by total plate count mold and bacteria. It was found that exposing senna to ozone for 120 minutes significantly reduced microbial population. For the detoxification of aflatoxin by ozone, the results showed that the content of aflatoxin in senna was reduced after exposure to ozone. However, ozone had no effect on the population of microorganisms (bacteria) and aflatoxin content when stored it in plastic bag for 3 months.

Keywords: ozone, aflatoxin, senna (Cassia angustifolia)

Background

From the results of the study, it is observed that the ozone concentration of 100 ppm for 60 and 120 minutes significantly reduced the microbial population. The aflatoxin content in the senna samples was reduced after exposure to ozone gas. However, ozone had no effect on the population of microorganisms (bacteria) and aflatoxin content when stored in plastic bags for 3 months.

Abstract

The effects of ozone on microbial contaminants and aflatoxin reduction of senna (Cassia angustifolia) was investigated. The samples were exposed to ozone gas at the concentrations of 100 ppm for 60 and 120 minutes. The microbial population was determined by total plate count mold and bacteria. It was found that exposing senna to ozone for 120 minutes significantly reduced microbial population. For the detoxification of aflatoxin by ozone, the results showed that the content of aflatoxin in senna was reduced after exposure to ozone. However, ozone had no effect on the population of microorganisms (bacteria) and aflatoxin content when stored it in plastic bag for 3 months.

Keywords: ozone, aflatoxin, senna (Cassia angustifolia)
ูปกรณ์และวิธีการ
การทดลองหาระยะเวลาที่เหมาะสมของการรังโยนของเชื้อจุลินทรีย์ที่ดิน

น้ำมันเขม่าแห้งที่เคยถูกเผาแล้วเหลือไปรังโยนในผู้กำลังใช้ที่ทำการผลิตยา 30 ชม. ในระยะเวลาต่างๆ กัน ได้แก่ 0 60 120 นาที ซึ่งน้ำมันเขม่าที่ทำละลายได้จานวน 25 กก. นำน้ำมันก็ผสมกับ 0.1% peptone solution 225 ml เข้ากัน ศักย์การ ทำให้ผู้ทำา pour plate ในสภาพลมดุจ (aseptic technique) โดยทำาผู้ทำการจนได้มีความเข้มข้นที่ 10⁻¹ ถึง 10⁻⁴ ใช้ automatic pipette ดูปของเหลวที่ทำการจ้างจนที่ความเข้มข้นละ 1 ml ใส่ลงในอาหารเลี้ยงเชื้อ PDA แล้วผสมให้เข้ากันตามความ เข้มข้น 3 ชั่วโมงให้หายขาดแล้วก์นำไปสู่ปัจจัยหุ่นยีปันเป็นเวลา 48 ชั่วโมง นั้นจานวนไก่ที่เกิดขึ้นทั้งหมด (colony forming unit, CFU/g) ตามวิธีการมาตรฐาน AOAC (2005)

ประสิทธิภาพของการรังโยนของผลไม้ต่อการถูกพาไปรังโยนในของเชื้อรา แตกต่างและสารละลายพลาสติก

น้ำมันเขม่าที่เคยถูกเผาแล้วเหลือไปรังโยนในผู้กำลังใช้ที่ทำการผลิตยา 1 คืน ที่ 120 นาที นำน้ำมันบริbands และ
แผนที่อยู่ โดยทำา direct plate count และวิเคราะห์สารละลายพลาสติกก่อนและหลังการให้รังโยนในยุคพลาสติกเป็นเวลา 3 เดือน สำหรับวิเคราะห์สารละลายพลาสติกน้ำมันข้อจำจำว่ามี 10 กรัม ผสมกับ 70% methanol 50 ml ทำาการเย็นต่างๆ 3 ชั่วโมง แล้วนำการรังโยนของผู้ผลิตไปทำาวิเคราะห์สารละลายพลาสติกของเชื้อรา THAI-NEO BIOTECH โดยทำา ELISA และนำไปใช้ด้วยเครื่อง microwell reader ที่ความยาวคลื่น 650 นาฬิกา ภายในเวลา 20 นาที ทำาสารละลายพลาสติกที่ได้ในหน่วย ppb

ผลและวิเคราะห์

น้ำมันเขม่าแห้งที่เคยรังโยนเป็นระยะเวลายื่นๆ คือ 0, 60 และ 120 นาที จากนั้นนำน้ำมันทดสอบสูงสู่การรังโยน
ของเชื้อจุลินทรีย์ โดยทำาระยะเวลา 3 ชั่วโมง นำน้ำมันสามารถทดลองไปรังโยนของจุลินทรีย์ได้ โดยทำาการรังโยนของ
น้ำมันที่ 120 นาที สำหรับระยะเวลาการรังโยนของจุลินทรีย์ได้มากกว่าระยะเวลาอื่นๆ โดยจะมี 6.8x10⁴ CFU/ml และสัดส่วน 2.30 x 10⁴ CFU/ml ที่ระยะเวลาการรังโยน 120 นาที เพื่อ 3.0x10⁴ CFU/ml ที่ระยะเวลาการรังโยน 60 นาที (Figure 1 และ
2) เช่นเดียวกับ Hungsavanich (1999) ได้ทดสอบการใช้โซลูชันในการทำาการรังโยนในเพื่อสูญออกไป 4 ชนิด(The, กระเทียม, ทับทิม, กระเทียม และ แซว) พบว่าสามารถละลายได้ 1000 ณหน่วยจากการที่มีคุณสมบัติเป็นดีเสียไข่
สารละลายเชื้อจุลินทรีย์ที่จะนำไปทำาสารละลายพลาสติก (cell membrane) ทำาให้เชื้อจุลินทรีย์ไม่สามารถมีชีวิตต่อไปได้ (ชุมทางนุก, แสนอนุรักษ์, 2540) ซึ่งสอดคล้องกับ Whangchai et al. (2005) ที่ได้ส่งท่าท่าไปใช้ โซลูชันสามารถควบคุมการเจริญเติบโตของเชื้อรา Lasidiopodila sp. ซึ่งเป็นสาเหตุของโรคต่างๆ ที่เกี่ยวกับการดับ
ผัด ทำาการเจริญเติบโต โดยระยะเวลาในการรังโยนที่มากขึ้นสามารถยังการเจริญเติบโตได้มากขึ้น สิ่งพืช
(2543) กล่าวว่าประสิทธิภาพในการเจริญเติบโตของโซลูชันยุคเก่ายุคความเจริญเติบโตของโซลูชันและระยะเวลาในการทำาเณร์
ขึ้น ซึ่งสอดคล้องกับ ชัยจินดา (2549) พบว่า การรังโยนของสมบัติพืชคือจุลินทรีย์ในระยะเวลาได้เพิ่มขึ้นทำาสารละลายในการรังโยน
ที่ 10 นาที แต่ถ้าทำาระยะเวลาในการทำา 60 และ 120 นาทีทำาเพิ่มเพิ่มขึ้นมาที่สุดสามารถแสดงปริมาณจุลินทรีย์ได้มากกว่าการ
ทดลองใน Hung และ Marinas (1999) ต่างกันในเรื่องการรังโยนของแล้วเวลาสูงสุดของโซลูชันยุคเก่ายุคผลิตภัณฑ์ที่มีการละลายด้วยวิธีนั้นๆ ของจุลินทรีย์ และมียุคต่างๆ ศักยภาพของ free radical (mediated)
เป็นตัวทำาละลาย โดยจะนำโซลูชันที่มีคุณสมบัติเป็นเทคโนโลยีไปทำาสุดท้าย โปรตีน และชีวของสมบัติในแอลกอฮอล์
ทำาให้ โปรตีนในเหลวเกิดการจับด้วยกัน เหล่านี้

Figure 1 Total plate count [CFU/ml (x 10⁴)] of senna treated with gaseous ozone for 0, 60 and 120 minutes
Figure 2 Total plate count [CFU/ml (x 10^6)] of senna treated with gaseous ozone for 60 minutes (b), 120 minutes (c) and control (a)

Figure 3 Changes in microbial contaminants (mold and bacteria) of senna after ozone exposure and storage at ambient temperature for 3 months
Figure 4 Aflatoxin (ppb) of senna treated with gaseous ozone for 120 minutes and storage at ambient temperature for 3 months.

Figure 4 Aflatoxin (ppb) of senna treated with gaseous ozone for 120 minutes and storage at ambient temperature for 3 months.