
Ratio Optimization of Three Vegetable Oils as Sweet Almond Oil Imitation

Phuwadolpaisarn, T., Jeyashoke, N. and Lachakunjit, N.

Abstract

Virgin coconut oil (VCO), cold pressed sunflower oil (SFO) and high oryzanol rice bran oil (RBO) are blended in different ratios to imitate the viscosity of sweet almond oil which is popularly used in the spa business. The optimum ratio of the three oils was investigated by the mixture design method. The ratio of VCO:SFO:RBO in which the viscosity was similar to sweet almond was 0.15:0.25:0.60. Viscosity, acid value, peroxide value and linoleic acid content of this ratio were 37.47(cSt), 3.39 mg KOH/g oil, 6.29 meq peroxide/kg oil and 34.89%, respectively. These values meet the industrial standard of edible fats and oils.

Keywords: virgin coconut oil, cold pressed sunflower oil, rice bran oil, sweet almond oil
อุปกรณ์และวิธีการ

วิเคราะห์คุณสมบัติทางเคมีและกายภาพของน้ำมันระดับบริสุทธิ์ น้ำมันเจริญ น้ำมันแมกไมรา สารละลายและน้ำมันสวีทอล์มอนด์ ดังนี้ ค่าความเหนี่ยวด้วยวิสเซมเตอร์ที่ 40°C ค่ากรดด่างด้วยวิสเซมเตอร์กับปิลสีเขียวไลน์ทิสไอดิค (KOH) (AOCS Official Method Cd 3d-63) ค่ากรดด่างด้วยวิสเซมเตอร์กับปิลสีเขียวไลน์ทิสไอดิค (Na₂S₄O₆) (AOCS Official Method Cd 8-53) ค่าความคงตัวของความชื้น 756 KF โพลิหร์ ของค่าประสิทธิภาพของอินเส้นด้วยเครื่องเทียบโวลท์มิเตอร์ โลกราฟิ (GO) (Harrington et al., 1985) น้ำมันเจริญ 3 ชนิดมีสมุดกับโมเลกุลส่วนใน Table 1 ใช้แผนภูมิแสดงแบบผสม (Jumaa et al., 1998) และวิเคราะห์คุณสมบัติทางเคมีและกายภาพของน้ำมันเจริญ น้ำมันแมกไมรา น้ำมันสวีทอล์มอนด์ ค่ากรด ค่าโปรตีนไข่ น้ำมันสวีทอล์มอนด์ จากน้ำมันค่าความเหนี่ยงที่เกิดด้วยน้ำมันสวีทอล์มอนด์ ค่ากรด ค่าโปรตีนไข่ และกรดินีโอเลิกส์ร่างกายทางวิทยาศาสตร์ Statistica 7 นำข้อมูลที่ได้มายังช่องยืนยัน (overlay) และวิเคราะห์ถึงการส่วนใหญ่ที่เหมาะสม

Table 1 Ratio of oil mixture

<table>
<thead>
<tr>
<th>ชุดที่</th>
<th>VCO</th>
<th>SFO</th>
<th>RBO</th>
<th>ชุดที่ VCO</th>
<th>SFO</th>
<th>RBO</th>
<th>ชุดที่ VCO</th>
<th>SFO</th>
<th>RBO</th>
<th>ชุดที่ VCO</th>
<th>SFO</th>
<th>RBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>5</td>
<td>0</td>
<td>1.00</td>
<td>9</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>13</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.33</td>
<td>0.67</td>
<td>6</td>
<td>0.17</td>
<td>0.17</td>
<td>0.67</td>
<td>10</td>
<td>0.33</td>
<td>0.67</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.50</td>
<td>0.50</td>
<td>6</td>
<td>0.17</td>
<td>0.17</td>
<td>0.67</td>
<td>11</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.67</td>
<td>0.33</td>
<td>7</td>
<td>0.33</td>
<td>0.33</td>
<td>0.67</td>
<td>12</td>
<td>0.50</td>
<td>0.50</td>
<td>16</td>
<td>1.00</td>
</tr>
</tbody>
</table>

VCO = virgin coconut oil, SFO = sunflower oil, RBO = rice bran oil, SAO = sweet almond oil

ผลและวิจารณ์

VCO มีค่ากรดและความชื้นสูงที่สุด แต่ SFO มีค่ากรดและโปรตีนไข่ค่อนข้างต่ำที่สุด ส่วน SAO มีค่ากรดและโปรตีนไข่ต่ำสุด แต่ SFO มีค่ากรดและโปรตีนไข่ต่ำสุด (Table 2) โดยค่ากรดจะเป็นค่าที่แสดงปริมาณกรดไขมันอิสระ ดังนั้น VCO ค่ากรดก็คือเป็นค่าที่แสดงการเกิดปฏิกิริยาของกรดไขมันในน้ำมัน ค่าความชื้นเป็นค่าที่แสดงการไหลของน้ำมันที่สามารถแห้งไม่ถูกและค่าความแข็งในการทำลายการละลายของน้ำมัน ดังนั้น VCO และ RBO มีค่าที่มากกว่า SFO องค์ประกอบของน้ำมันมีผลต่อคุณสมบัติของน้ำมัน ถ้ามีน้ำมันประกอบของน้ำมันสูงขึ้น ดังนี้ให้น้ำมันมีคุณสมบัติด่าในผลิตภัณฑ์ เช่น C₁₈:₁, C₁₈:₂ และ C₁₈:₃ ดูที่ค่ากรดและความชื้นสูงที่สุด จาก Table 3 พบว่า VCO คือ C₁₂ และ C₁₄ เป็นร้อยละ จึงส่งผลให้ VCO มีค่ากรดและความชื้นสูงที่สุด RBO เป็น C₁₈:₁ และ C₁₈:₂ เป็นองค์ประกอบหลัก ทำให้มีความเหนี่ยงดูดดีและมีโอกาสเกิดปฏิกิริยาของกรดไขมันเข้าไปได้ แต่ RBO มีน้ำมันดูดซึมไปลดละเอียดในการทำลายการเกิดปฏิกิริยาของกรดไขมันได้ดี ทำให้ค่ากรดและความชื้นสูงไม่สูงมาก SFO มี C₁₈:₁ และ C₁₈:₂ เป็นองค์ประกอบหลักทำให้มีความเหนี่ยงดูดดีทำงกับ RBO แต่มีปริมาณของ C₁₈:₂ อยู่สูงมาก ส่งผลให้ค่ากรดและความชื้นสูงไม่สูงมาก ส่วน SAO เป็นน้ำมันที่มีองค์ประกอบ C₁₈:₁ เป็นหลักและมีปริมาณสูง การเกิดปฏิกิริยาของกรดไขมันน้อยกว่า SFO ทำให้มีค่ากรดและความชื้นสูงที่ ต่ำกว่า SFO

Table 2 Physico-chemical properties of 4 oils

<table>
<thead>
<tr>
<th>Type of oil</th>
<th>Acid value (mg KOH/g of sample)</th>
<th>Peroxide (meq peroxide/kg oil)</th>
<th>Viscosity at 40°C (cSt)</th>
<th>Moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCO</td>
<td>0.0921 ± 0.0058</td>
<td>8.10 ± 0.22</td>
<td>27.14 ± 0.10</td>
<td>0.117 ± 0.0017</td>
</tr>
<tr>
<td>RBO</td>
<td>0.1741 ± 0.0034</td>
<td>8.66 ± 0.60</td>
<td>41.52 ± 0.06</td>
<td>0.098 ± 0.0006</td>
</tr>
<tr>
<td>SFO</td>
<td>4.2111 ± 0.0252</td>
<td>13.58 ± 1.07</td>
<td>33.75 ± 0.39</td>
<td>0.091 ± 0.0021</td>
</tr>
<tr>
<td>SAO</td>
<td>0.1963 ± 0.0252</td>
<td>5.86 ± 0.57</td>
<td>37.45 ± 0.39</td>
<td>0.033 ± 0.0006</td>
</tr>
</tbody>
</table>
Table 3 Fatty acid composition of 4 oils

<table>
<thead>
<tr>
<th>Type of oil</th>
<th>Fatty acid</th>
<th>C₈₀</th>
<th>C₁₀₀</th>
<th>C₁₂₀</th>
<th>C₁₄₀</th>
<th>C₁₆₀</th>
<th>C₁₈₀</th>
<th>C₁₈₁</th>
<th>C₁₈₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCO</td>
<td>7.51</td>
<td>5.44</td>
<td>54.02</td>
<td>18.33</td>
<td>7.43</td>
<td>2.02</td>
<td>4.45</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>RBO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SFO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20.89</td>
<td>3.52</td>
<td>10.83</td>
<td>62.3</td>
</tr>
<tr>
<td>SAO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.02</td>
<td>3.74</td>
<td>82.99</td>
<td>6.43</td>
</tr>
</tbody>
</table>

Table 4 The comparative properties of blended oil by statistic 7 program

<table>
<thead>
<tr>
<th>VCO</th>
<th>SFO</th>
<th>RBO</th>
<th>Viscosity at 40°C(cSt)</th>
<th>Acid Value (mg KOH/g oil)</th>
<th>Peroxide Value (meq peroxide/kg oil)</th>
<th>Linoleic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.54</td>
<td>0.48</td>
<td>37.37</td>
<td>6.86</td>
<td>10.77</td>
<td>45.76</td>
</tr>
<tr>
<td>0.05</td>
<td>0.44</td>
<td>0.51</td>
<td>37.43</td>
<td>5.67</td>
<td>8.85</td>
<td>42.15</td>
</tr>
<tr>
<td>0.10</td>
<td>0.35</td>
<td>0.55</td>
<td>37.41</td>
<td>4.59</td>
<td>7.56</td>
<td>38.65</td>
</tr>
<tr>
<td>0.15</td>
<td>0.25</td>
<td>0.6</td>
<td>37.47</td>
<td>3.39</td>
<td>6.29</td>
<td>34.89</td>
</tr>
<tr>
<td>0.20</td>
<td>0.15</td>
<td>0.65</td>
<td>37.52</td>
<td>2.19</td>
<td>4.36</td>
<td>31.06</td>
</tr>
<tr>
<td>0.25</td>
<td>0.06</td>
<td>0.69</td>
<td>37.51</td>
<td>1.11</td>
<td>1.54</td>
<td>27.36</td>
</tr>
<tr>
<td>0.28</td>
<td>0</td>
<td>0.72</td>
<td>37.54</td>
<td>0.39</td>
<td>1.19</td>
<td>24.98</td>
</tr>
</tbody>
</table>
Figure 1 Properties of oil mixture in calculate with statistic a) viscosity, b) acid value, c) peroxide value and d) linoleic content

